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ABSTRACT

AN ADAPTIVE TREECODE-ACCELERATED BOUNDARY INTEGRAL SOLVER FOR
COMPUTING THE ELECTROSTATICS OF A BIOMOLECULE

by

Andrew J. Szatkowski

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Dexuan Xie

The Poisson-Boltzmann equation (PBE) is a widely-used model in the calculation of

electrostatic potential for solvated biomolecules. PBE is an interface problem defined in the

whole space with the interface being a molecular surface of a biomolecule, and has been solved

numerically by finite difference, finite element, and boundary integral methods. Unlike the

finite difference and finite element methods, the boundary integral method works directly over

the whole space without approximating the whole space problem into an artificial boundary

value problem. Hence, it is expected to solve PBE in higher accuracy. However, so far, it was

only applied to a linear PBE model.

Recently, a solution of PBE was split into three component functions. One of them, G,

is a known function that collects all the singularity points of PBE so that the other two

components become continuously twice differentiable within the protein and solvent regions.

Such an approach has led to efficient PBE finite element solvers. This provided motivation to

study the application of this solution decomposition to the development of a new boundary

integral algorithm for solving PBE.

Reformulating the interface problem of Ψ into a boundary integral equation is nontrivial

because the involved flux interface condition is discontinuous. Development of a fast numerical

algorithm for solving the resulted boundary integral equation is an attractive research topic.

In this masters thesis, we focus on one key step of our new boundary integral algorithm: how

ii
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to solve for the second component function Ψ of the PBE solution by a boundary integral

method. This work becomes important by itself because the sum of Ψ with G gives the

solution of the Poisson dielectric model for the case of a biomolecule in water.

In this project, we obtain the new boundary integral equation and develop an adaptive

treecode-accelerated boundary integral algorithm. We then program the new algorithm in

Fortran and make various numerical tests to validate our new algorithm and program package.

In particular, numerical tests performed against analytic models verify the effectiveness of the

solver, and comparisons to experimental data verify its accuracy for real-world applications.

In this way, it is demonstrated that this solver and solution decomposition can compute the

electrostatics of a biomolecule in water with high numerical accuracy.
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Chapter 1

Introduction

This chapter introduces the motivations for this project, and outlines the thesis. The

motivations for this project are two-fold. First, we discuss the importance of solving the

Poisson-Boltzmann equation (PBE) accurately for real-world applications for which the

ramifications are profound for the field of biochemistry. Second, the importance of exploring

and expanding the reach of numerical methods in the field of applied mathematics and

scientific computing is highlighted. Here, a brief description of the importance of this project

is given from the perspectives of both biochemistry and applied mathematics.

1.1 Motivations

Computing the electrostatics of a solvated biomolecule is a topic of vast importance in

the field of biochemistry. PBE is a commonly-used implicit solvent continuum model for

predicting such electrostatics. It has been a popular problem to solve in both its linearized

and nonlinear forms. We also notice that as an implicit solvent model, it ignores the size of the

molecules under consideration treating them as point charges, and it omits the nonlocal effect

of polarization correlations among water molecules. It is to our advantage that significant

work has been done to alleviate the problems with both types of oversights. The literature

has seen analysis developed for the nonlocal case [19] and analysis to handle the size effects

of the different molecules [20].

The PBE model is an extremely costly and difficult problem to solve. Even as computers

get bigger and faster, the reduction of computing cost (both in terms of memory and other

1
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resources consumed, and total cpu time) is a vital and important research endeavor.

There are two popular approaches for solving PBE: finite element and finite difference

methods which discretize the whole space and approximate the boundary conditions at infinity,

and boundary element methods which discretize the surface of the biomelecule. There exist

popular program packages for solving PBE based on the aformentioned approaches such as

DelPhi [14], UHBD [15], and APBS [16]. The work done in [1] (using a treecode method)

and [18] (using a fast multipole method) demonstrate two solvers for the linearized PBE

using boundary elements.

The primary purpose of this thesis is to develop a boundary integral solver via the solution

decomposition described in [3]. The solution is a modification of the approach proposed in

[1], in which the PBE system was reduced to a system of two coupled integral equations.

Using the aforementioned solution decomposition, the resulting system is only one equation

and half the size of the tradition boundary integral formulation.

1.2 Outline

The remainder of this thesis is organized as follows:

In Chapter 2, we review the solution decomposition of PBE. We then consider the case

of water to derive a new boundary integral equation in a Fredholm equation of the second

kind is described. For this derivation, the solvent domain and protein domain are treated

separately. By using the boundary conditions and some known results of potential theory,

these two separate treatments can be combined into one equation described on the interface,

Γ. Hence, we have rewritten a 3-dimensional volume integral as a 2-dimensional integral over

a surface.

In Chapter 3, the adaptive-treecode solver is described. First, we give a general overview

of the treecode structure, and clarify the N-body potential form necessary to employ this

technique. We describe how the 3D system of atom positions described in cartesian coordinates

is identified into near and far-field clusters. The Taylor approximation scheme is described to

2
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handle so-called particle-cluster interactions. The chapter is concluded with a description

of how the system is discretized and the general algorithm that was followed to solve for Ψ

using the adaptive-treecode solver.

In Chapter 4, the results of the simulations are displayed. The accuracy of the solver

will be given as compared to analytic models. Historically the Born model was the only

available analytic solution for comparison, but in this thesis we use the results of [9] in which

an analytic solution was found for an arbitrary number of charges placed inside a sphere is

given to verify the code. We then use the protein 1A63 protein to verify the time complexity

improvement of the method, and a set of 17 proteins for which there exists experimental data

to compare the free energy of solvation calculations.

The conclusion, as well as future work, will be given in the last chapter. In this section a

summary of the results and their importance to relevant fields of study will be expatiated.

3
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Chapter 2

Boundary Integral Equation For PBE

This chapter examines the commonly-used dimensionless PBE model. The classic definition

gives the electrostatic potential over the entire domain R3. The steps to convert this equation

into one integral on the boundary will be presented. To do so we follow the technique

described in [6].

2.1 PBE Model

To describe the system of a solvated protein, we denote the bounded region hosting the

protein structure by Dp and the surrounding solvent region by Ds. The surface of the protein,

or the interface, is denoted by Γ. The space R3 has the decomposition

R3 = Ds ∪Dp ∪ Γ (2.1)

Figure 2.1: Decomposition of the whole space into the protein and solvent domains and the

interface linking them

4
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The commonly-used dimensionless PBE model is given as



−εp∆u (r) = α

np∑
j=1

zjδrj , r ∈ Dp

−εs∆u (r) + κ2sinh (u) = 0, r ∈ Ds

u
(
s+
)

= u
(
s−
)
, εs

∂u (s+)

∂n (s)
= εp

∂u (s−)

∂n (s)
, s ∈ Γ

u (r)→ 0 as|r| → ∞

(2.2)

where α and κ2 are defined by

α =
1010e2

c

ε0kBT
, κ2 = 2Is

10−17NAe
2
c

ε0kBT
. (2.3)

Here, ec represents the elementary charge of an electron, ε0 is the permittivity of free space,

kB is the Boltzmann constant, Is is the ionic strength, NA is Avogradro’s number, and T is

the absolute temperature in Kelvin. We also have that εs is the permittivity of the solvent

region, εp is the permittivity of the protein region, and zj is the charge of atom j. The work

done in [3] allows us to decompose the PBE solution u as

u (r) = G (r) + Ψ (r) + Φ̃ (r) ∀r ∈ Ω (2.4)

where G is given by

G (r) =
α

4πεp

np∑
j=1

zj
|r− rj|

(2.5)

and ∂G(s)
∂n(s)

can be found as

∂G(s)

∂n(s)
= − α

4πεp

np∑
j=1

zj
(s− rj) · n
|s− rj|3

. (2.6)

5
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Notice that Ψ is a solution of the linear interface problem



∆Ψ(r) = 0, r ∈ Dp ∪Ds,

Ψ(s+) = Ψ(s−), s ∈ Γ,

εs
∂Ψ(s+)
∂n(s)

= εp
∂Ψ(s−)
∂n(s)

+ (εp − εs)∂G(s)
∂n(s)

, s ∈ Γ,

Ψ(r)→ 0 as |r| → ∞,

(2.7)

and Φ̃ is a solution of the nonlinear interface problem



∆Φ̃(r) = 0, r ∈ Dp,

−εs∆Φ̃(r) + κ2 sinh(G+ Ψ + Φ̃) = 0, r ∈ Ds,

Φ̃(s+) = Φ̃(s−), εs
∂Φ̃(s+)
∂n(s)

= εp
∂Φ̃(s−)
∂n(s)

, s ∈ Γ,

Φ̃(r)→ 0 as |r| → ∞.

(2.8)

For the case when the solvent region is water, the ionic strength is zero and hence the

term κ disappears, thus eliminating the nonlinear effects and the need to solve (2.8). This

means that, for the water case, we only need to solve (2.7), because G is a known function.

The solution decomposition then becomes, u = G + Ψ. To convert (2.7) into a boundary

integral, it is necessary to consider the cases r ∈ Dp, the protein domain, and r ∈ Ds, the

solvent domain, separately

2.2 The Protein Domain

For the boundary integral considering the interior domain, we will consider the first equation

in (2.7) (i.e. we are considering the case when r ∈ Dp). The fundamental solution to the

Poisson equation with singularity in r satisfies

∆G0 (r, s) = −δr (2.9)

6
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where δr is the Dirac delta measure for which it is known that as a continuous linear functional

we have

< δr, v >= v(r) (2.10)

for any test function v, and G0 is known to be

G0(r, s) =
1

4π|r− s|
. (2.11)

We multiply the first equation in (2.7) by G0 (r, s), multiply (2.9) by Ψ (s), subtract the

results from each other, and integrate over the domain Dp with respect to s. We obtain:

∫
Dp

Ψ (s) ∆G0 (r, s)−G0 (r, s) ∆Ψ (s) ds =

∫
Dp

−Ψ (s) δrds. (2.12)

Green’s second identity is defined as

∫
Ω

(u∆v − v∆u) dV =

∫
∂Ω

(
u
∂v

∂n
− v ∂u

∂n

)
dS, (2.13)

and applying it to (2.12), we find that

∫
Γ

[
Ψ (s)

∂G0 (r, s)

∂n (s)
−G0 (r, s)

∂Ψ (s)

∂n (s)

]
dS (s) = −Ψ (r) . (2.14)

Rearranging terms results in

Ψ (r) =

∫
Γ

G0 (r, s)
∂Ψ (s)

∂n (s)
dS (s)−

∫
Γ

Ψ (s)
∂G0 (r, s)

∂n (s)
dS (s) . (2.15)

Now, let r = s− αn (s), where n (s) is the outward normal vector at s and α is a positive

constant, and consider the limit as α→ 0. We define this limit as s−. Applying the properties

7
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Figure 2.2: To consider the integral in the solvent domain we introduce a new interface Γρ.
Therefore, the integrals are well-defined, and we can take the limit as ρ→∞

of single and double layer potentials as described in [8] we obtain

1

2
Ψ
(
s−
)

=

∫
Γ

G0

(
s−, s

) ∂Ψ (s)

∂n (s)
dS (s)−

∫
Γ

Ψ (s)
∂G0 (s−, s)

∂n (s)
dS (s) , for s ∈ Γ. (2.16)

2.3 The Solvent Domain

For the boundary integral considering the exterior domain, consider the first equation in

(2.7). We are now considering the case when r ∈ Ds. First, we must define a new domain,

Dρ = {r||r| ≤ ρ}\Dp ∪ Γ such that ∂Dρ = Γρ ∪ Γ (See Figure: 2.2). Now we follow the same

steps as for the protein domain, that is

∫
Dρ

Ψ (s) ∆G0 (r, s)−G0 (r, s) ∆Ψ (s) ds =

∫
Dρ

−Ψ (s) δrds. (2.17)

Applying Green’s second identity yields

∫
Γ

Ψ (s)
∂G0 (r, s)

∂nρ (s)
−G0 (r, s)

∂Ψ (s)

∂nρ (s)
dS (s) (2.18)

+

∫
Γρ

Ψ (s)
∂G0 (r, s)

∂nρ (s)
−G0 (r, s)

∂Ψ (s)

∂nρ (s)
dS (s) = −Ψ (r) . (2.19)

8
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The integral in (2.19) vanishes as ρ→∞ per the boundary conditions. Moreover,

nρ (s) = −n (s) so that

Ψ (r) =

∫
Γ

−G0 (r, s)
∂Ψ (s)

∂n (s)
dS (s) +

∫
Γ

Ψ (s)
∂G0 (r, s)

∂n (s)
dS (s) , r ∈ Ds. (2.20)

In this case, we define r = s + αn (s) and define the limit as α → 0 to be denoted as s+.

Applying the results from [8] again, we see that

1

2
Ψ
(
s+
)

=

∫
Γ

−G0

(
s+, s

) ∂Ψ (s)

∂n (s)
dS (s) +

∫
Γ

Ψ (s)
∂G0 (s+, s)

∂n (s)
dS (s) , for s ∈ Γ. (2.21)

2.4 The new boundary integral

So far we have

1

2
Ψ
(
s−
)

=

∫
Γ

G0

(
s−, s

) ∂Ψ (s)

∂n (s)
dS (s)−

∫
Γ

Ψ (s)
∂G0 (s−, s)

∂n (s)
dS (s) , for s ∈ Γ (2.22)

and

1

2
Ψ
(
s+
)

=

∫
Γ

−G0

(
s+, s

) ∂Ψ (s)

∂n (s)
dS (s) +

∫
Γ

Ψ (s)
∂G0 (s+, s)

∂n (s)
dS (s) , for s ∈ Γ. (2.23)

The goal is to combine these two equations so that the normal derivative of Ψ is no longer

needed. To accomplish this task, we use the boundary condition

∂G (s)

∂n (s)
=

1

(εp − εs)

[
εs
∂Ψ (s+)

∂n (s)
− εp

∂Ψ (s−)

∂n (s)

]
. (2.24)

Multiplying (2.22) by εp and (2.23) by εs, and adding them together results in

1

2
(εp + εs) Ψ (s) =

∫
Γ

G0 (s, s′)

[
εp
∂Ψ (s−)

∂n (s)
− εs

∂Ψ (s+)

∂n (s)

]
dS (s′) (2.25)

9
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+

∫
Γ

∂G0 (s, s′)

∂n (s′)
(εs − εp) Ψ (s′) dS (s′) . (2.26)

Lastly, we multiply by − 1
εp−εs .

− (εp + εs)

2 (εp − εs)
Ψ (s) =

∫
Γ

G0 (s, s′)

(εp − εs)

[
εs
∂Ψ (s+)

∂n (s)
− εp

∂Ψ (s−)

∂n (s)

]
dS (s′) (2.27)

−
∫

Γ

∂G0 (s, s′)

∂n (s′)

(εs − εp)
(εp − εs)

Ψ (s′) dS (s′) (2.28)

Applying (2.24) simplifies this equation by replacing the normal derivatives of Ψ. The

boundary integral equation for Ψ is

− (εp + εs)

2 (εp − εs)
Ψ (s) =

∫
Γ

G0 (s, s′)
∂G (s′)

∂n (s′)
+

∫
Γ

∂G0 (s, s′)

∂n (s′)
Ψ (s′) dS (s) , for s ∈ Γ. (2.29)

Hence, the result described in [2] is verified. After the solution of the above boundary equation

is found, we can calculate the values of Ψ in Dp and Ds using the following expressions:

Ψ(r) =



1

εp
g(r) +

εs − εp
εp

∫
Γ

∂G0 (r, s)

∂n (s)
Ψ (s) dS (s) if r ∈ Dp,

1

εs
g(r) +

εs − εp
εs

∫
Γ

∂G0 (r, s)

∂n (s)
Ψ (s) dS (s) if r ∈ Ds,

(2.30)

where

g(r) = (εs − εp)
∫

Γ

G0 (r, s)
∂G (s)

∂n (s)
dS (s) , (2.31)

and

∂G0 (r, s)

∂n (s)
=

(r− s) · n(s)

4π|r− s|3
. (2.32)

10
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Chapter 3

Adaptive Treecode-Accelerated Solver

This chapter provides a general overview of the adaptive-treecode method: the adaptive

features, the role of N-body potentials, how the system was discretized, and the general

algorithm are discussed.

3.1 Treecode Structure and N-body Potentials

The treecode method is a popular tool for solving N-body problems. In general, any problem

that involves N-body potentials may employ a treecode technique. The general form of an

N-body potential is

Vi =
N∑
j=1
j 6=i

qjK(xi,xj), i = 1, . . . , N (3.1)

where K is a kernel function, xi and xj are particle positions, and qj is a charge associated

with xj [1]. In order to evaluate the potential Vi, the positions of each particle are broken

down into an octree structure used in [4]. This means the root of the tree is defined to be

a cube containing all the particles. The root cube is divided into eight equally-sized cubes,

and each of those cubes is divided similarly (Figure: 3.1). The division process continues

recursively until there are no more than N0 particles in each cube, a parameter to be defined

by the user. The smallest cubes are called the leafs of the tree. This process yields uniformly

sized clusters. For the purposes of this project, an adaptive treecode is employed to utilize

non-uniform clusters. The adaptive tree is different in that the cubes surrounding the particles
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are resized to be the smallest cube containing all particles, and empty cubes are discarded as

shown in Figure 3.2. This reduces the size of the tree, and also allows for a more accurate

description of a cluster, i.e. it cuts down on empty space.

Figure 3.1: The octree structure encloses all particles within the root cube, and then

successively divides each cube into eight smaller cubes.

Figure 3.2: This illustration describes the adaptive nature of this treecode scheme: Cells are

resized and empty cells are eliminated.

Once the tree has been created and the clusters have been determined, the summation for

the potential in (3.1) can be evaluated as a sum of near-field (Ni) interactions and far-field

(Fi) interactions. The far-field is determined to be the set of clusters that are well-separated

12
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from the point xi. A particle xi and a cluster c are defined to be well-separated if a multipole

acceptance criterion (MAC) is satisfied. The MAC is defined as

rc
R
≤ θ (3.2)

where rc is defined to be the cluster radius, R = |xi − xc| is the particle-cluster distance and

θ is a user-defined parameter between zero and one. Larger values of θ identify more clusters

as far-field clusters. The cluster radius and the center of the cluster are defined in various

ways. The center may be defined quite literally as the middle of the cube defining the cluster.

In this way the cluster radius may naturally be the distance from the center to the corner of

the cube. Since this problem considers the effects of spherical objects, it is natural for us

that the center, xc, is determined to be the center of mass of the cluster, c, and the cluster

radius is defined to be the maximum distance between the center and all bodies within the

cluster, rc = maxxj∈c|xj − xc|. See Figure 3.3.

Figure 3.3: Particle-Cluster Separation: A visual representation of what how the MAC

parameter determines a cluster to be well separated from a particle.

13
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Any clusters that satisfy the MAC criterion are determined to be in the far-field. The

far-field clusters can be evaluated as a pth order Cartesian Taylor approximation about the

center of the cluster xc. The summation in (3.1) is broken apart into two sums. One sum

involves clusters in the near-field, that is, clusters that do not satisfy the MAC criterion. The

interactions between xi and these clusters are evaluated using direct summation. The second

summation involves clusters determined to be well-separated from xi. It is these clusters

that we wish to approximate using a Taylor expansion. The Taylor expansion about a point

y ∈ R3 of order p is defined as

f (x) =

p∑
|α|=0

1

α!
Dα

xf (y) (x− y)α (3.3)

where

Dα
x = ∂αx =

∂α

∂xα
. (3.4)

Cartesian multi-index notation is defined by α = (α1, α2, α3), αi ∈ N, ‖α‖ = α1 + α2 + α3,

α! = α1!α2!α3!

The summation in (3.1) is expanded about the center of a cluster xc and can be written

as

Vi ≈
∑
c∈Ni

∑
xj∈c

qjK(xi,xj) +
∑
c∈Fi

∑
xj∈c

qj

p∑
‖α‖=0

1

α!
∂αyK(xi,xc) (xj − xc)

α . (3.5)

Notice that the terms qj and (xj − xc)
α on the right hand side depend on j. This allows us

to separate the summation involving those terms to get

Vi ≈
∑
c∈Ni

∑
xj∈c

qjK(xi,xj) +
∑
c∈Fi

p∑
‖α‖=0

1

α!
∂αyK(xi,xc)

∑
xj∈c

qj (xj − xc)
α . (3.6)

We define the Taylor coefficients to be

aα(xi,xc) =
1

α!
∂αyK(xi,xc) (3.7)
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and the cluster moments as

mα
c =

∑
xj∈c

qj(xj − xc)
α (3.8)

so that the equation for Vi can be more succinctly written as

Vi ≈
∑
c∈Ni

∑
xj∈c

qjK(xi,xj) +
∑
c∈Fi

p∑
‖α‖=0

aα(xi,xc)m
α
c . (3.9)

Just as in [1] we have the partial derivative of the kernel. We must apply an operator,

∂I0xj
, to (3.9) to get

∂I0xj
Vi =

N∑
j=1

qj∂
I0
xj
K (xi,xj) , i = 1, . . . , N (3.10)

≈
∑
c∈Ni

∑
xj∈c

qj∂
I0
xj
K(xi,xj) (3.11)

+
∑
c∈Fi

p∑
‖α‖=0

(α + I0)!

α!
aα+I0(xi,xc)m

α
c . (3.12)

Since the calculation of aα can be costly in terms of computation time and resources for

higher orders p, we use the recurrence relations derived in [7]. Since our consideration of Ψ

does not involve this term associated with the screened Coulomb potential, we take their

recurrence relations and let the parameter, κ, go to zero. We end up with a coupled set of

relations defined by

‖α‖ |x− y|2aα − (2 ‖α‖ − 1)
3∑
i=1

(xi − yi) aα−ei + (‖α‖ − 1)
3∑
i=1

aα−2ei = 0 (3.13)

‖α‖ bα = 0. (3.14)
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3.2 Discretization

In order to discretize this system we first rewrite (2.29) as

− (εp + εs)

2 (εp − εs)
Ψ (s)−

∫
Γ

G0 (s, s′)
∂G (s′)

∂n (s′)
dS′ =

∫
Γ

∂G0 (s, s′)

∂n (s′)
Ψ (s′) dS′, for s ∈ Γ (3.15)

so that it has the form of a Fredholm integral equation of the second kind defined generally as

λx (t)−
∫
D

K (t, s)x (s) ds = y (t) , t ∈ D. (3.16)

There are two common methods of solving (3.16): collocation methods and Galerkin methods.

We opt for the former, and in particular, a centroid collocation method as used in [1]. As

such, we then discretize the interface, Γ, into a collection of N triangles

Γ ≈ Γh = ∪Nj=14j (3.17)

so that we have for any given function f

∫
Γh

f (s, s′) ds′ =
N∑
j=1

∫
4j
f (s, s′) ≈

N∑
j=1

f (s, s′)Aj (3.18)

where Aj is the area of the jth triangle and s and s′ are triangle centroids. Since f is

representing a kernel function, it will have a singularity at s′.

One option for handling the singularity is to remove it, but this strategy could result in

significant errors. In an attempt to reduce the errors associated with removing said singularity

at si = sj, we take the point sj to be a vertex of 4j and then average the contribution of

each vertex. So when si = sj we treat the singularity as

∫
4j
f (si, sj) dsj ≈

1

3

3∑
k=1

f (si,vk)Aj (3.19)
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where vk is the kth vertex of 4j.

Given a triangulation of the interface, Γ, let si, Ai : i = 1, . . . , N denote the centroids

and areas of the faces in the triangulation respectively. Here N represents the total number

of faces (surface points). Then for i = 1, . . . , N (3.15) becomes

− (εp + εs)

2 (εp − εs)
Ψ (si)−

N∑
j=1

[
∂G0 (si, sj)

∂n (sj)
Ψ (sj)

]
Aj =

N∑
j=1

[
G0 (si, sj)

∂G (sj)

∂n (sj)

]
Aj. (3.20)

Let

S (si) =
N∑
j=1

[
G0 (si, sj)

∂G (sj)

∂n (sj)

]
Aj, (3.21)

so that we have

− (εp + εs)

2 (εp − εs)
Ψ (si)−

N∑
j=1

[
∂G0 (si, sj)

∂n (sj)
Ψ (sj)

]
Aj = S (si) . (3.22)

Note that (3.22) defines a linear system of the from Ax = b where x = [Ψ (si)] and b = [S (si)].

3.3 Treecode Algorithm

The tree structure is programmed so that each cluster is referenced by a pointer and contains

the information of its child clusters. In this way we can recursively access the branches and

leaves of the tree as needed. In order to calculate the N-body potentials we employ the

following algorithm.

1. Input particle positions and charges: xi, qi, for i = 1, . . . , N

2. Input user parameters: θ, p, N0

3. Construct the tree

for i=1:N do
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Compute the potential for particle xi

end for

Compute potential contributions for all other particles xj

if MAC is satisfied then

compute moments of the cluster c (unless already stored)

compute particle-cluster interactions by Taylor approximation

else

if c is a leaf then

compute particle-cluster interactions via direct solver

else

for j=1:number of children do

Call Compute Potential for each child cube

end for

end if

end if

The recursive nature of the algorithm that brings down the time complexity. For an

interface discretized into N triangles, each branch of the tree has at most N/8l cubes, where

l describes the level of the branch (0 refers to the root cluster). The number of levels the tree

has will roughly be 8l = N . Therefore, similar to binary search algorithms, the amount of

time it will take to traverse the tree to the lowest level will be on the order of O(N log8N).

3.4 Implementation

The adaptive-treecode accelerated boundary integral solved developed in the previous sections

was programmed in Fortran 90. The system described in (3.22) is solved for Ψ using the

GMRES algorithm from NetLib [23, 13] where each matrix vector multiplication Ax is done

using the treecode algorithm. Setting the MAC parameter θ = 0 results in the program

18



www.manaraa.com

solving the system directly. The simulations were run on a Mac Pro, Mac OS X version

10.7.5, with 12 GB 667 MHZ DDR2 FB-DIMM memory, and a 2 x 3 GHZ Quad-Core Intel

Xeon processor.
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Chapter 4

Results

This section presents the results for two separate test cases. The first case ran the coded

solution against a new class of analytic spherical models given in [9]. This new solution is

described by

Φ(r) =



ec
ε0

∞∑
n=0

np∑
j=1

zjAj,n|r|nPn

(
rj · r
|rj||r|

)
+

ec
4πε0εp

∞∑
j=1

zj
|r− rj|

if r ∈ Dp

ec
ε0

∞∑
n=0

np∑
j=1

zjBj,n

|r|n+1
Pn

(
rj · r
|rj||r|

)
if r ∈ Ds,

(4.1)

where Aj,n and Bj,n are given by

Aj,n =
(εp − εs) (n+ 1) |rj|n

4πεpa2n+1 [nεp + (n+ 1) εs]
(4.2)

Bj,n =
(2n+ 1) |rj|n

4π [nεp + (n+ 1) εs]
. (4.3)

The work in this paper allows us to expand on the Born Ball model, which is traditionally

used to verify this type of computational work, and calculate an analytic solution for an

arbitrary number or charges inside a sphere.

The second test case compares the calculation for the free energy of solvation against a

set of experimental data reported in [10] for 17 different proteins. The protein 1A63 is used

to demonstrate the time behavior of the solution.
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Figure 4.1: This illustration shows the geodesic spherical mesh generated by repeatedly
refining an icosahedron

4.1 Analytic Sphere Model

The analytic sphere model provides a large number of test cases with which to verify the code

in addition to the traditional Born Ball Model (a single point charge placed at the origin of

spherical region). The program package for this model takes the atom locations and charges

from a PQR file, adjusts the atom coordinates so the center of the atom structure is at the

origin of a cartesian grid, and scales the magnitude of each atom position to be, at most,

80 percent of a user-specified radius. This code was then modified to generate the resulting

calculations for Ψ at the centroids of a provided geodesic spherical mesh. In this way we can

compare the analytic results to the numeric results at the exact same mesh points.

Fortran 90 was used to create a spherical mesh generator to run these analytic models.

The program creates a spherical mesh by repeatedly refining an icosahedron scaled to a

user-specified radius, as in Figure 4.1. Therefore, the same mesh data could be supplied to

the analytic model that was supplied to our solver. The tests were performed using the PQR

files for nine different proteins to serve as a random sample of point charges within a sphere.

Thus, we test nine cases of an assortment of atoms, ranging from 488 to 8732 atoms, inside a

sphere representing the protein surface of radius 2. We used the proteins defined by their

protein data bank (PDB) [17] IDs: 2LZX, 1AJJ, 1FXD, 1HPT, BPTI, 1SVR, 1A63, 1CID,

1A7M, and 1F6W.

The PDB file format provides the macromolecular structure data. It includes all the

necessary information to describe the 3D shape of a protein in terms of atom type, atom

21



www.manaraa.com

Figure 4.2: A VMD generated graphic of the atom structure of protein ID 1A63

position, atom charge, atom radius, etc. This file, for our purposes, is converted into a PQR

by the software PDB2PQR available through [16] which contains only the information on

atom position, atom charge, and atom radius. For example, the protein 2LZX describes

the structure of Asteropsin B from a marine sponge and is proposed as a scaffolding in oral

peptide drug adminstration. The protein 1A63 is the RNA binding domain of E.Coli rho

factor. Using the PDB file we can generate a graphic to see the structure of these proteins

using the VMD software. In Figure: 4.2 we see the atoms of protein 1A63.

We use two different error measurements to gauge the accuracy of our model. The absolute

error we define by

eabs =

(
N∑
j=1

|Ψa(xj)−Ψ(xj)|2
)1/2

(4.4)

and the relative error defined by

erel =

(∑N
j=1|Ψa(xj)−Ψ(xj)|2∑N

j=1|Ψa(xj)|2

)1/2

(4.5)

where Ψa represents the analytic solution, and Ψ represents the numerical solution. The

results were compiled for each protein as shown in Table 4.1. The errors for each icosahedral
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refinement level were then averaged across the nine proteins simulated in the analytic model.

This gives a better picture of the performance of the code written in compared to the

traditional Born model which considers only one point charge at the center of a sphere.

Protein 2LZX (488 atoms)

Number of Surfaces Absolute Error Relative Error
20 27.78978 1.73018E-001
80 26.92327 8.47123E-002
320 28.55830 4.46659E-002

1,280 29.80057 2.32597E-002
5,120 30.49947 1.18959E-002
20,480 33.48362 6.52899E-003
81,920 75.22487 3.33392E-003
327,680 279.16305 1.36082E-003

Table 4.1: A display of the error results from the analytic case of test protein 2LZX for 7
different icosahedral refinements

The graphs depicted in Figure 4.3 and in Figure 4.4 show the results of this averaging.

Both plots were generated using MATLABs “loglog” function which allows for a more

condensed representation of the data because it spans very large (or very small) numbers. We

see an exponential trend in the absolute error, which coincides with the fact that the number

of data points in the vector is increasing exponentially with each icosahedral refinement.

Comparatively, the relative error is decreasing, indicating the distance between data points is

decreasing in comparison to the size of the analytic solution as a whole.
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Figure 4.3: The average of the absolute error between the numerical solution and the analytic

solution computed for nine different proteins

Figure 4.4: The average of the relative error between the numerical solution and the analytic

solution computed for nine different proteins

4.2 Protein Simulation

The next step of compiling results comes from investigating how the solver handles these

calculations for real world proteins. For this part of the testing, the point charges of the

proteins were not centered, rescaled, or otherwise modified. In an effort to verify the solver’s
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Figure 4.5: A comparison of the free energy of solvation calculations between our boundary
integral solver, another boundary integral solver, and experimental data for 17 different
proteins

accuracy for the complex surfaces of biomolecules, these test simulations were performed on

the protein as is described in its PQR file.

Mesh generation for the surface of a protein is a much more involved issue and one of

great research importance. For this project, we use the mesh generation software MSMS [12]

to generate a discretized triangular surface for the protein. The MSMS software essentially

creates this surface by rolling a sphere of a user-specified “probe-radius” around the atoms in

the protein. We define this probe-radius as 1.4 angstroms. It is a typical value to be chosen

as it approximates the radius of a water molecule.

The surface of a protein can be described in a number of ways. As described in [11] there

is the Van der Waals surface, the topological boundary for the overlapping spheres for each

atom, the Solvent Accessible Surface (SAS), which is defined by the center of a sphere as it

rolls over the van der Waals surface, and the Solvent Excluded Surface (SES) which is much
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Figure 4.6: A VMD generated image showing three different surface meshes generated by the
MSMS software. From left to right they were created using densities of 1, 5 and 20.

more complicated to define. MSMS creates a SAS for the protein in question to a certain

so-called “surface density”. Providing the software with a higher density yields a finer mesh.

In Figure 4.6 we see three different meshes produced by the MSMS software. From left to

right we have densities 1, 5, and 10, with a total number of surface points of 20,489, 70,201,

and 265,947 respectively

We first test the efficacy of our solver for real-world applications by running simulations

on a set of 17 different compounds to compute the electrostatic free energy of solvation for

which experimental data was reported in [10]. This calculation is of particular interest to

those studying solvated biomolecules. We use the formula as given in [5] to convert our

dimensionless solution into the physical units for this model be meaningful in real world

applications. This will generates a solvation energy with units of kcal/mol. The free energy

of solvation, denoted Ees, is given by

Ees =
NA

4184

kBT

2ec

np∑
j=1

zjΨ(rj) (4.6)

where we use (4.1) to calculate Ψ at each atom position. Figure 4.5 compares the results

of our solver to the experimental data alongside the results produced by another boundary

integral solver for the Linearized PBE [1]. It can be seen that both codes provide reasonable
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estimates to the measured data, but in the majority of the cases our solver produced more

accurate results. The results are also displayed in Table 4.2 which also shows the absolute

value of the difference between the calculated and experimental values.

Index Experimental Our Solver Difference Other Solver Difference

1 -8.84 -8.83 0.01 -8.53 0.34
2 -2.38 -3.08 0.70 -2.59 0.21
3 -1.93 -3.17 1.24 -2.67 0.74
4 1.07 -1.97 3.04 -1.85 2.92
5 -11.01 -6.18 4.83 -4.62 6.39
6 -9.76 -5.32 4.44 -4.65 5.11
7 -4.23 -2.78 1.45 -2.84 1.39
8 -4.97 -5.68 0.71 -5.67 0.70
9 -3.28 -1.92 1.36 -1.61 1.67
10 -5.05 -3.00 2.05 -2.68 2.37
11 -6.00 -5.58 0.42 -5.59 0.41
12 -2.93 -2.29 0.64 -2.03 0.90
13 -6.34 -5.70 0.64 -5.53 0.81
14 -3.54 -1.99 1.55 -1.69 1.85
15 -1.55 -1.71 0.16 -1.55 0
16 -4.08 -4.95 0.87 -4.21 0.13
17 -9.81 -7.88 1.93 -6.90 2.91

Table 4.2: Results of the simulation run for 17 compounds with our solver, another solver,
and comparisons to the experimental data

The last aspect of this solver that we would like to highlight is the reduction in solution

time. For this purpose we use the protein 1A63 and the 17th protein from the above set

labeled 17 s5 Zap. For these two proteins we compute the electrostatic potential for a series

of increasing MSMS surface densities by both treecode and direct solver. For the treecode

case we set the MAC parameter, θ = 0.8, and we set θ = 0 for the direct solver case. The

results are shown in Table 4.3 and Table 4.4. Figure 4.7 graphically displays the data for

protein 1A63 and Figure 4.8 graphically displays the results for protein 17 s5 Zap.
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Protein 1A63 (2065 atoms)

Treecode Direct Solver
Surface Points Solve Time Iterations Solve Time Iterations

20,489 55.37 23 848.71 23
30,301 71.17 19 1824.38 19
70,201 173.16 17 9378.4 17
132,159 494.13 24 29,104.2 15

Table 4.3: Solution time for the electrostatics of protein 1A63 using treecode and using the
direct solver alongside the total number of GMRES iterations.

Protein 17 S5 Zap (9 atoms)

Treecode Direct Solver
Surface Points Solve Time Iterations Solve Time Iterations

206 8.35E-003 5 1.70E-002 5
312 1.81E-002 5 3.88E-002 5
760 8.42E-002 5 0.22 5

1,456 0.21 5 0.77 5
3,020 0.47 5 3.63 5
6,310 1.18 5 16.34 5
12,996 2.82 5 69.99 5

Table 4.4: Solution time for the electrostatics of protein 17 S5 Zap using treecode and using
the direct solver alongside the total number of GMRES iterations
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Figure 4.7: A comparison of solution time between a direct solver and the treecode accelerated
solver for the protein 1A63 (2065) atoms versus number of surface points.

Figure 4.8: A comparison of solution time between a direct solver and the treecode accelerated
solver for the protein 17 (9) atoms versus number of surface points
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Chapter 5

Conclusions and Future Work

This chapter illustrates the importance of the results mentioned in the previous chapter.

In particular, we discuss the validity of the tests and the theory presented in this thesis.

Moreover, the importance of this project will be made clear as a first step towards a potential

larger project that tackles all three components of the solution decomposition mentioned

in Chapter 2. Further investigation of the techniques and theory of boundary element and

hybrid solution methods for the nonlinear case would also prove a significant contribution to

the literature and the fields concerned.

5.1 Conclusions

In this thesis an adaptive treecode-accelerated boundary integral solver was presented for

PBE. Specifically, we applied the boundary integral method to a solution decomposition

method for the water case.

The derivation for the single boundary integral was presented using Green’s functions

and the boundary conditions. We made explicit the basic idea of the treecode structure for

accelerating the calculation of N-body potentials (matrix-vector products), and in this way, a

simple algorithm was presented.

The solver was tested against a new class of analytic solutions. This provided the

advantage of computing the entire solution vector at specific mesh points for a number of

test cases, rather than simply comparing one calculation for solvation energy. In this way

we were able to analyze the error reduction of the method. The sphere was generated using
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a refined icosahedron programmed in Fortran 90. We note that for the averaged nine test

cases, the relative error reduced by about a factor of two with each refinement.

We also tested the solution to verify the reduction in time complexity using protein 1A63.

The graphs and tabled results clearly show that the solution time of the direct solver increases

at least quadratically. In sharp contrast, the solution time when the treecode is employed

behaves logarithmically.

The method applied to the solution decomposition behaved as expected. We see a good

demonstration of the reduction in time complexity, as well as the accuracy of the solver.

More importantly, we have a solid framework from which to construct an advanced solver for

the entire nonlinear problem. The improved numerical accuracy from the boundary-integral

approach should be particularly beneficial in further studies.

5.2 Future Work

The potential for projects stemming from these results is profound and numerous. The

solvability of PBE using a boundary element technique with the solution decomposition

provides new challenges. The nonlinear PBE has already been solved by Finite Difference,

Finite Element, and even Hybrid Finite Element and Finite Difference Methods. We have

noted the solution of the linearized PBE by boundary elements, employing both treecode

and fast multipole methods. Therefore, improving the current model, and extending these

results to the nonlinear case of particular research interest and importance.

There are two main issues with this implementation that could be improved. The first

was the quadrature technique we employed. There have been boundary element methods

presented using curved boundary elements [22]. With any quadrature scheme we will have

to handle the case of the singularity of the kernel function that arises in the integral. It

would certainly be a worthwhile endeavor to investigate different approaches for handling

the singularity as well as different quadrature schemes for discretizing the problem. The

second, is that the right hand side of the linear system to be solved is in and of itself an
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N-body problem. That is, the set up of the system requires O(N2) operations. This could be

remedied with a treecode type algorithm, or perhaps the solution would manifest itself in a

hybrid boundary/finite element method over which the right hand side could be calculated

quickly with more existing grid-based methods.

Hence, the primary difficulty for considering the nonlinear case is that the system can

not be reduced to strictly boundary integral equations. That is, we will need to consider

integrals defined over the whole space. Any future work will require a hybrid method that can

calculate the necessary volume integrals and integrate them with the boundary solution. The

solution of Φ̃ also affords the opportunities to include the research associated with Kernel-Free

techniques as already investigated in [21].

We note that this project has very important results for the fields it concerns as well as for

the advancement and embellishment of scientific computing methods. The results presented

are encouraging and lay the groundwork to investigate the aforementioned techniques.
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